Gao Xing


2024

pdf bib
IAD: In-Context Learning Ability Decoupler of Large Language Models in Meta-Training
Yuhan Liu | Xiuying Chen | Gao Xing | Ji Zhang | Rui Yan
Proceedings of the 2024 Joint International Conference on Computational Linguistics, Language Resources and Evaluation (LREC-COLING 2024)

Large Language Models (LLMs) exhibit remarkable In-Context Learning (ICL) ability, where the model learns tasks from prompts consisting of input-output examples. However, the pre-training objectives of LLMs often misalign with ICL objectives. They’re mainly pre-trained with methods like masked language modeling and next-sentence prediction. On the other hand, ICL leverages example pairs to guide the model in generating task-aware responses such as text classification and question-answering tasks. The basic pre-training task-related capabilities can sometimes overshadow or conflict with task-specific subtleties required in ICL. To address this, we propose an In-context learning Ability Decoupler (IAD). The model aims to separate the ICL ability from the general ability of LLMs in the meta-training phase, where the ICL-related parameters are separately tuned to adapt for ICL tasks. Concretely, we first identify the parameters that are suitable for ICL by transference-driven gradient importance. We then propose a new max-margin loss to emphasize the separation of the general and ICL abilities. The loss is defined as the difference between the output of ICL and the original LLM, aiming to prevent the overconfidence of the LLM. By meta-training these ICL-related parameters with max-margin loss, we enable the model to learn and adapt to new tasks with limited data effectively. Experimental results show that IAD’s capability yields state-of-the-art performance on benchmark datasets by utilizing only 30% of the model’s parameters. Ablation study and detailed analysis prove the separation of the two abilities.

2023

pdf bib
DialoGPS: Dialogue Path Sampling in Continuous Semantic Space for Data Augmentation in Multi-Turn Conversations
Ang Lv | Jinpeng Li | Yuhan Chen | Gao Xing | Ji Zhang | Rui Yan
Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)

In open-domain dialogue generation tasks, contexts and responses in most datasets are one-to-one mapped, violating an important many-to-many characteristic: a context leads to various responses, and a response answers multiple contexts. Without such patterns, models poorly generalize and prefer responding safely. Many attempts have been made in either multi-turn settings from a one-to-many perspective or in a many-to-many perspective but limited to single-turn settings. The major challenge to many-to-many augment multi-turn dialogues is that discretely replacing each turn with semantic similarity breaks fragile context coherence. In this paper, we propose DialoGue Path Sampling (DialoGPS) method in continuous semantic space, the first many-to-many augmentation method for multi-turn dialogues. Specifically, we map a dialogue to our extended Brownian Bridge, a special Gaussian process. We sample latent variables to form coherent dialogue paths in the continuous space. A dialogue path corresponds to a new multi-turn dialogue and is used as augmented training data. We show the effect of DialoGPS with both automatic and human evaluation.

2022

pdf bib
MGIMN: Multi-Grained Interactive Matching Network for Few-shot Text Classification
Jianhai Zhang | Mieradilijiang Maimaiti | Gao Xing | Yuanhang Zheng | Ji Zhang
Proceedings of the 2022 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies

Text classification struggles to generalize to unseen classes with very few labeled text instances per class. In such a few-shot learning (FSL) setting, metric-based meta-learning approaches have shown promising results. Previous studies mainly aim to derive a prototype representation for each class. However, they neglect that it is challenging-yet-unnecessary to construct a compact representation which expresses the entire meaning for each class. They also ignore the importance to capture the inter-dependency between query and the support set for few-shot text classification. To deal with these issues, we propose a meta-learning based method MGIMN which performs instance-wise comparison followed by aggregation to generate class-wise matching vectors instead of prototype learning. The key of instance-wise comparison is the interactive matching within the class-specific context and episode-specific context. Extensive experiments demonstrate that the proposed method significantly outperforms the existing SOTA approaches, under both the standard FSL and generalized FSL settings.