Brian DuSell


2024

pdf bib
PILA: A Historical-Linguistic Dataset of Proto-Italic and Latin
Stephen Bothwell | Brian DuSell | David Chiang | Brian Krostenko
Proceedings of the 2024 Joint International Conference on Computational Linguistics, Language Resources and Evaluation (LREC-COLING 2024)

Computational historical linguistics seeks to systematically understand processes of sound change, including during periods at which little to no formal recording of language is attested. At the same time, few computational resources exist which deeply explore phonological and morphological connections between proto-languages and their descendants. This is particularly true for the family of Italic languages. To assist historical linguists in the study of Italic sound change, we introduce the Proto-Italic to Latin (PILA) dataset, which consists of roughly 3,000 pairs of forms from Proto-Italic and Latin. We provide a detailed description of how our dataset was created and organized. Then, we exhibit PILA’s value in two ways. First, we present baseline results for PILA on a pair of traditional computational historical linguistics tasks. Second, we demonstrate PILA’s capability for enhancing other historical-linguistic datasets through a dataset compatibility study.

2022

pdf bib
Algorithms for Weighted Pushdown Automata
Alexandra Butoi | Brian DuSell | Tim Vieira | Ryan Cotterell | David Chiang
Proceedings of the 2022 Conference on Empirical Methods in Natural Language Processing

Weighted pushdown automata (WPDAs) are at the core of many natural language processing tasks, like syntax-based statistical machine translation and transition-based dependency parsing. As most existing dynamic programming algorithms are designed for context-free grammars (CFGs), algorithms for PDAs often resort to a PDA-to-CFG conversion. In this paper, we develop novel algorithms that operate directly on WPDAs. Our algorithms are inspired by Lang’s algorithm, but use a more general definition of pushdown automaton and either reduce the space requirements by a factor of |Gamma| (the size of the stack alphabet) or reduce the runtime by a factor of more than |Q| (the number of states). When run on the same class of PDAs as Lang’s algorithm, our algorithm is both more space-efficient by a factor of |Gamma| and more time-efficient by a factor of |Q| x |Gamma|.

2020

pdf bib
Learning Context-free Languages with Nondeterministic Stack RNNs
Brian DuSell | David Chiang
Proceedings of the 24th Conference on Computational Natural Language Learning

We present a differentiable stack data structure that simultaneously and tractably encodes an exponential number of stack configurations, based on Lang’s algorithm for simulating nondeterministic pushdown automata. We call the combination of this data structure with a recurrent neural network (RNN) controller a Nondeterministic Stack RNN. We compare our model against existing stack RNNs on various formal languages, demonstrating that our model converges more reliably to algorithmic behavior on deterministic tasks, and achieves lower cross-entropy on inherently nondeterministic tasks.

2019

pdf bib
Efficiency through Auto-Sizing: Notre Dame NLP’s Submission to the WNGT 2019 Efficiency Task
Kenton Murray | Brian DuSell | David Chiang
Proceedings of the 3rd Workshop on Neural Generation and Translation

This paper describes the Notre Dame Natural Language Processing Group’s (NDNLP) submission to the WNGT 2019 shared task (Hayashi et al., 2019). We investigated the impact of auto-sizing (Murray and Chiang, 2015; Murray et al., 2019) to the Transformer network (Vaswani et al., 2017) with the goal of substantially reducing the number of parameters in the model. Our method was able to eliminate more than 25% of the model’s parameters while suffering a decrease of only 1.1 BLEU.