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Abstract

This paper describes our work with the data
distributed for the WMT’12 Confidence Es-
timation shared task. Our contribution is
twofold: i) we first present an analysis of
the data which highlights the difficulty of
the task and motivates our approach; ii) we
show that using non-linear models, namely ran-
dom forests, with a simple and limited feature
set, succeeds in modeling the complex deci-
sions required to assess translation quality and
achieves results that are on a par with the sec-
ond best results of the shared task.

1 Introduction

Confidence estimation is the task of predicting the
quality of a system prediction without knowledge
of the expected output. It is an important step
in many Natural Language Processing applications
(Gandrabur et al., 2006). In Machine Translation
(MT), this task has recently gained interest (Blatz
et al., 2004; Specia et al., 2010b; Soricut and Echi-
habi, 2010; Bach et al., 2011). Indeed, professional
translators are more and more requested to post-edit
the outputs of a MT system rather than to produce
a translation from scratch. Knowing in advance the
segments they should focus on would be very help-
ful (Specia et al., 2010a). Confidence estimation is
also of great interest for developers of MT system, as
it provides them with a way to analyze the systems
output and to better understand the main causes of
errors.

Even if several studies have tackled the problem
of confidence estimation in machine translation, un-
til now, very few datasets were publicly available and
comparing the proposed methods was difficult, if not
impossible. To address this issue, WMT’12 orga-
nizers proposed a shared task aiming at predict the
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quality of a translation and provided the associated
datasets, baselines and metrics.

This paper describes our work with the data of the
WMT’12 Confidence Estimation shared task. Our
contribution is twofold: i) we first present an analysis
of the provided data that will stress the difficulty of
the task and motivate the choice of our approach; ii)
we show how using non-linear models, namely ran-
dom forests, with a simple and limited features set
succeed in modeling the complex decisions require
to assess translation quality and achieve the second
best results of the shared task.

The rest of this paper is organized as follows: Sec-
tion 2 summarizes our analysis of the data; in Sec-
tion 3, we describe our learning method; our main
results are finally reported in Section 4.

2 Data Analysis

In this section, we quickly analyze the data dis-
tributed in the context of the WMT’12 Confidence
Estimation Shared Task in order to evaluate the diffi-
culty of the task and to find out what predictors shall
be used. We will first describe the datasets, then the
features usually considered in confidence estimation
tasks and finally summarize our analyses.

2.1 Datasets

The datasets used in our experiments were released
for the WMT’12 Quality Estimation Task. All the
data provided in this shared task are based on the
test set of WMT’09 and WMT’10 translation tasks.

The training set is made of 1, 832 English sen-
tences and their Spanish translations as computed by
a standard Moses system. Each sentence pair is ac-
companied by an estimate of its translation quality.
This score is the average of ordinal grades assigned
by three human evaluators. The human grades are in
the range 1 to 5, the latter standing for a very good
translation that hardly requires post-editing, while
the former stands for a bad translation that does
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not deserve to be edited, meaning that the machine
output useless and that translation should better be
produced from scratch. The test contains 422 sen-
tence pairs, the quality of which has to be predicted.

The training set also contains additional material,
namely two references (the reference originally given
by WMT and a human post-edited one), which will
allow us to better interpret our results. No references
were provided for the test set.

2.2 Features

Several works have studied the problem of confidence
estimation (Blatz et al., 2004; Specia et al., 2010b) or
related problems such as predicting readability (Ka-
nungo and Orr, 2009) or developing automated essay
scoring systems (Burstein et al., 1998). They all use
the same basic features:

IBM 1 score measures the quality of the “associa-
tion” of the source and the target sentence using
bag-of-word translation models;

Language model score accounts for the “flu-
ency”, “grammaticality” and “plausibility” of a
target sentence;

Simple surface features like the sentence length,
the number of out-of-vocabulary words or words
that are not aligned. These features are used to
account for the difficulty of the translation task.

More elaborated features, derived, for instance,
from parse trees or dependencies analysis have also
been used in past studies. However they are far more
expensive to compute and rely on the existence of ex-
ternal resources, which may be problematic for some
languages. That is why we only considered a re-
stricted number of basic features in this work1. An-
other reason for considering such a small set of fea-
tures is the relatively small size of the training set: in
our preliminary experiments, considering more fea-
tures, especially lexicalized features that would be of
great interest for failure analysis, always resulted in
overfitting.

2.3 Data Analysis

The distribution of the human scores on the training
set is displayed in Figure 1. Surprisingly enough,
the baseline translation system used to generate the
data seems to be pretty good: 73% of the sentences
have a score higher than 3 on a 1 to 5 scale. It
also appears that most scores are very close: more
than half of them are located around the mean. As
a consequence, it seems that distinguishing between
them will require to model subtle nuances.

1The complete list of features is given in Appendix A.

Figure 1: Distribution of the human scores on the train
set. (HS∗ stands for Human Scores)

Figure 2 plots the distribution of quality scores
as a function of the Spanish-to-English IBM 1 score
and of the probability of the target sentence. These
two scores were computed with the same models that
were used to train the MT systems that have gener-
ated the training data. It appears that even if the
examples are clustered by their quality, these clusters
overlap and the frontiers between them are fuzzy and
complex. Similar observations were made for others
features.

Figure 2: Quality scores as a function of the Spanish-to-
English IBM 1 score and of the probability of the target
sentence (HS∗ stands for Human Scores)

These observations prove that a predictor of the
translation quality has to capture complex interac-
tion patterns in the training data. Standard results
from machine learning show that such structures can
be described either by a linear model using a large
number of features or by a non-linear model using a
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(potentially) smaller set of features. As only a small
number of training examples is available, we decided
to focus on non-linear models in this work.

3 Inferring quality scores

Predicting the quality scores can naturally be cast
as a standard regression task, as the reference scores
used in the evaluation are numerical (real) values.
Regression is the approach adopted in most works
on confidence estimation for MT (Albrecht and Hwa,
2007; Specia et al., 2010b). A simpler way to tackle
the problem would be to recast it as binary classi-
fication task aiming at distinguishing “good” trans-
lations from “bad” ones (Blatz et al., 2004; Quirk,
2004). It is also possible, as shown by (Soricut and
Echihabi, 2010), to use ranking approaches. How-
ever, because the shared task is evaluated by com-
paring the actual value of the predictions with the
human scores, using these last two frameworks is not
possible.

In our experiments, following the observations re-
ported in the previous section, we use two well-
known non-linear regression methods: polynomial
regression and random forests. We also consider lin-
ear regression as a baseline. We will now quickly
describe these three methods.

Linear regression (Hastie et al., 2003) is a simple
model in which the prediction is defined by a linear
combination of the feature vector x: ŷ = β0 + x>β,
where β0 and β are the parameters to estimate.
These parameters are usually learned by minimiz-
ing the sum of squared deviations on the training
set, which is an easy optimization problem with a
close-form solution.

Polynomial regression (Hastie et al., 2003) is a
straightforward generalization of linear regression in
which the relationship between the features and the
label is modeled as a n-th order polynomial. By care-
fully extending the feature vector, the model can be
reduced to a linear regression model and trained in
the same way.

Random forest regressor (Breiman, 2001) is an en-
semble method that learns many regression trees and
predicts an aggregation of their result. In contrast
with standard decision tree, in which each node is
split using the best split among all features, in a ran-
dom forest the split is chosen randomly. In spite of
this simple and counter-intuitive learning strategy,
random forests have proven to be very good “out-
of-the-box” learners and have achieved state-of-the-
art performance in many tasks, demonstrating both
their robustness to overfitting and their ability to
take into account complex interactions between fea-
tures.

In our experiments, we use the implementation
provided by scikit-learn (Pedregosa et al., 2011).
Hyper-parameters of the random forest (the num-
ber of trees and the stopping criterion) were chosen
by 10-fold cross-validation.

4 Experimental Setting

4.1 Features

In all our experiments, we considered a simple de-
scription of the translation hypotheses relying on
31 features. The complete list of features is given
in Appendix A. All these features have already been
used in works related to ours and are simple fea-
tures that can be easily computed using only a lim-
ited number of external resources.

A key finding in our preliminary experiments is
the need to re-scale the features by dividing their
value by the length of the corresponding sentence
(e.g. the language model score of a source sentence
will be divided by its length of the source sentence,
and the one of a target sentence will be done by its
length of the target sentence). This rescaling makes
features that depend on the sentence length (like the
LM score) comparable and results in a large improve-
ment of the performance of the associated feature.

4.2 Metrics

The two metrics used to evaluate prediction perfor-
mance are the standard metrics for regression: Mean
Absolute Error (MAE) and Root Mean Squared Er-
ror (RMSE) defined by:

MAE =
1

n

n∑
i=1

|ŷi − yi|

RMSE =

√√√√ 1

n

n∑
i=1

(ŷi − yi)
2

where n is the number of examples, yi and ŷi the true
label and predicted label of the ith example. MAE
can be understood as the averaged error made in
predicting the quality of a translation. As it is easy
to interpret, we will use it to analyze our results.
RMSE scores are reported to facilitate comparison
with other submissions to the shared task.

All the reported scores have been computed using
the tools provided by the Quality Estimation task
organizers2.

2https://github.com/lspecia/QualityEstimation
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4.3 Results

Table 1 details the results achieved by the different
methods introduced in the previous section. All of
them achieve similar performances: their MAE is be-
tween 0.64 and 0.66, which is a pretty good result as
the best reported MAE in the shared task is 0.61.
Our best model is the second-best when submissions
are ranked according to their MAE.

Even if their results are very close (significance of
the score differences will be investigated in the fol-
lowing subsection), all non-linear models outperform
a simple linear regression, which corroborates the ob-
servations made in Section 2.

For the polynomial regression, we tried different
polynomial orders in order to achieve an optimal
setting. Even if this method achieves the best re-
sults when the model is selected on the test set, it is
not usable in practice: when we tried to select the
polynomial degree by cross-validation, the regressors
systematically overfitted due to the reduction of the
number of examples. That is why random forests,
which do not suffer from overfitting and can learn
good predictor even when features outnumber exam-
ples, is our method of choice.

4.4 Interpretation

To get a better understanding of the task difficulty
and to make interpretation of the error rate easier,
we train another regressor using an “oracle” feature:
the hTER score. It is clear that this feature can only
be computed on the training set and that considering
it does not make much sense in a “real-life” scenario.
However, this feature is supposed to be highly rele-
vant to the quality prediction task and should there-
fore result in a “large” reduction of the error rates.
Quantifying what “large” means in this context will
allow us to analyze the results presented in Table 1.

Training a random forest with this additional fea-
ture on 1, 400 examples of the train set chosen ran-
domly reduces the MAE evaluated on the 432 re-
maining examples by 0.10 and the RMSE by 0.12.
This small reduction stresses how difficult the task
is. Comparatively, the 0.02 reduction achieved by
replacing a linear model with a non-linear model
should therefore be considered noteworthy. Further
investigations are required to find out whether the
difficulty of the task results from the way human
scores are collected (low inter-annotators agreement,
bias in the gathering of the collection, ...) or from
the impossibility to solve the task using only surface
features.

Another important question in the analysis of our
results concerns the usability of our approach: an
error of 0.6 seems large on a 1 to 5 scale and may

question the interest of our approach. To allow a fine-
grained analysis, we report the correlation between
the predicted score and the human score (Figure 3)
and the distribution of the absolute error (Figure 4).
These figures show that the actual error is often quite
small: for more than 45% of the examples, the error
is smaller than 0.5 and for 23% it is smaller than 0.2.
Figure 3 also shows that the correlation between our
predictions and the true labels is “substantial” ac-
cording to the established guidelines of (Landis and
Koch, 1977) (the Pearson correlation coefficient is
greater than 0.6). The difference between the mean
of the two distributions is however quite large. Cen-
tering the predictions on the mean of the true label
may improves the MAE. This observation also sug-
gests that we should try to design evaluation metrics
that do not rely on the actual predicted values.

Figure 3: Correlation between our predictions and the
true label (HS∗ stands for Human Scores)

5 Conclusion

In this work, we have presented, a simple, yet effi-
cient, method to predict the quality of a translation.
Using simple features and a non-linear model, our
approach has achieved results close to the best sub-
mission to the Confidence Estimation shared task,
which supports the results of our analysis of the data.
In our future work, we aim at considering more fea-
tures, avoiding overfitting thanks to features selec-
tion methods.

Even if a fine-grained analysis of our results shows
the interest and usefulness of our approach, more re-
mains to be done to develop reliable confidence esti-
mation methods. Our results also highlight the need
to continue gathering high-quality resources to train
and investigate confidence estimation systems: even
when considering only very few features, our systems
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Train Test
Methods parameters MAE RMSE MAE RMSE

linear regression — 0.58 0.71 0.66 0.82

polynomial regression
n=2 0.55 0.68 0.64 0.79
n=3 0.54 0.67 0.64 0.79
n=4 0.54 0.67 0.65 0.85

random forest cross-validated 0.39 0.46 0.64 0.80

Table 1: Prediction performance achieved by different regressors

Figure 4: Distribution of the absolute error (|yi − ŷi|) of
our predictions

were prone to overfitting. Developing more elabo-
rated systems will therefore only be possible if more
training resource is available.
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A Features List

Here is the whole list of the 31 features we used in
our experiments († has been used in the baseline of
the shared task organizer):

• † Number of tokens in the source sentence

• † Number of tokens in the target sentence

• † Average token length in source sentence

• English-Spanish IBM 1 scores

• Spanish-English IBM 1 scores

• English-Spanish IBM 1 scores divided by the
length of source sentence

• English-Spanish IBM 1 scores divided by the
length of target sentence

• Spanish-English IBM 1 scores divided by the
length of source sentence

• Spanish-English IBM 1 scores divided by the
length of target sentence

• Number of out-of-vocabulary in source sentence

• Number of out-of-vocabulary in target sentence

• Out-of-vocabulary rates in source sentence

• Out-of-vocabulary rates in target sentence

• log10(LM probability of source sentence)

• log10(LM probability of target sentence)

• log10(LM probability of source sentence) divided
by the length of source sentence

• log10(LM probability of target sentence) divided
by the length of target sentence

• Ratio of functions words in source sentence

• Ratio of functions words in target sentence

• † Number of occurrences of the target word
within the target hypothesis (averaged for all
words in the hypothesis - type/token ratio)

• † Average number of translations per source
word in the sentence (as given by IBM 1 table
thresholded so that prob(t|s) > 0.2)

• † Average number of translations per source
word in the sentence (as given by IBM 1 table
thresholded so that prob(t|s) > 0.01) weighted
by the inverse frequency of each word in the
source corpus

• † Percentage of unigrams in quartile 1 of fre-
quency (lower frequency words) in a corpus of
the source language (SMT training corpus)

• † Percentage of unigrams in quartile 4 of fre-
quency (higher frequency words) in a corpus of
the source sentence

• † Percentage of bigrams in quartile 1 of fre-
quency of source words in a corpus of the source
language

• † Percentage of bigrams in quartile 4 of fre-
quency of source words in a corpus of the source
language

• † Percentage of trigrams in quartile 1 of fre-
quency of source words in a corpus of the source
language

• † Percentage of trigrams in quartile 4 of fre-
quency of source words in a corpus of the source
language

• † Percentage of unigrams in the source sentence
seen in a corpus (SMT training corpus)

• † Number of punctuation marks in the source
sentence

• † Number of punctuation marks in the target
sentence
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