@inproceedings{lin-etal-2021-readonce,
title = "{R}ead{O}nce Transformers: Reusable Representations of Text for Transformers",
author = "Lin, Shih-Ting and
Sabharwal, Ashish and
Khot, Tushar",
editor = "Zong, Chengqing and
Xia, Fei and
Li, Wenjie and
Navigli, Roberto",
booktitle = "Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers)",
month = aug,
year = "2021",
address = "Online",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2021.acl-long.554/",
doi = "10.18653/v1/2021.acl-long.554",
pages = "7129--7141",
abstract = "We present ReadOnce Transformers, an approach to convert a transformer-based model into one that can build an information-capturing, task-independent, and compressed representation of text. The resulting representation is reusable across different examples and tasks, thereby requiring a document shared across many examples or tasks to only be read once. This leads to faster training and evaluation of models. Additionally, we extend standard text-to-text transformer models to Representation+Text-to-text models, and evaluate on multiple downstream tasks: multi-hop QA, abstractive QA, and long-document summarization. Our one-time computed representation results in a 2x-5x speedup compared to standard text-to-text models, while the compression also allows existing language models to handle longer documents without the need for designing new pre-trained models."
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="lin-etal-2021-readonce">
<titleInfo>
<title>ReadOnce Transformers: Reusable Representations of Text for Transformers</title>
</titleInfo>
<name type="personal">
<namePart type="given">Shih-Ting</namePart>
<namePart type="family">Lin</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Ashish</namePart>
<namePart type="family">Sabharwal</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Tushar</namePart>
<namePart type="family">Khot</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2021-08</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers)</title>
</titleInfo>
<name type="personal">
<namePart type="given">Chengqing</namePart>
<namePart type="family">Zong</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Fei</namePart>
<namePart type="family">Xia</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Wenjie</namePart>
<namePart type="family">Li</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Roberto</namePart>
<namePart type="family">Navigli</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Online</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>We present ReadOnce Transformers, an approach to convert a transformer-based model into one that can build an information-capturing, task-independent, and compressed representation of text. The resulting representation is reusable across different examples and tasks, thereby requiring a document shared across many examples or tasks to only be read once. This leads to faster training and evaluation of models. Additionally, we extend standard text-to-text transformer models to Representation+Text-to-text models, and evaluate on multiple downstream tasks: multi-hop QA, abstractive QA, and long-document summarization. Our one-time computed representation results in a 2x-5x speedup compared to standard text-to-text models, while the compression also allows existing language models to handle longer documents without the need for designing new pre-trained models.</abstract>
<identifier type="citekey">lin-etal-2021-readonce</identifier>
<identifier type="doi">10.18653/v1/2021.acl-long.554</identifier>
<location>
<url>https://aclanthology.org/2021.acl-long.554/</url>
</location>
<part>
<date>2021-08</date>
<extent unit="page">
<start>7129</start>
<end>7141</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T ReadOnce Transformers: Reusable Representations of Text for Transformers
%A Lin, Shih-Ting
%A Sabharwal, Ashish
%A Khot, Tushar
%Y Zong, Chengqing
%Y Xia, Fei
%Y Li, Wenjie
%Y Navigli, Roberto
%S Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers)
%D 2021
%8 August
%I Association for Computational Linguistics
%C Online
%F lin-etal-2021-readonce
%X We present ReadOnce Transformers, an approach to convert a transformer-based model into one that can build an information-capturing, task-independent, and compressed representation of text. The resulting representation is reusable across different examples and tasks, thereby requiring a document shared across many examples or tasks to only be read once. This leads to faster training and evaluation of models. Additionally, we extend standard text-to-text transformer models to Representation+Text-to-text models, and evaluate on multiple downstream tasks: multi-hop QA, abstractive QA, and long-document summarization. Our one-time computed representation results in a 2x-5x speedup compared to standard text-to-text models, while the compression also allows existing language models to handle longer documents without the need for designing new pre-trained models.
%R 10.18653/v1/2021.acl-long.554
%U https://aclanthology.org/2021.acl-long.554/
%U https://doi.org/10.18653/v1/2021.acl-long.554
%P 7129-7141
Markdown (Informal)
[ReadOnce Transformers: Reusable Representations of Text for Transformers](https://aclanthology.org/2021.acl-long.554/) (Lin et al., ACL-IJCNLP 2021)
ACL
- Shih-Ting Lin, Ashish Sabharwal, and Tushar Khot. 2021. ReadOnce Transformers: Reusable Representations of Text for Transformers. In Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers), pages 7129–7141, Online. Association for Computational Linguistics.