Zhao Yang


2024

pdf bib
Analyzing Chain-of-thought Prompting in Black-Box Large Language Models via Estimated V-information
Zecheng Wang | Chunshan Li | Zhao Yang | Qingbin Liu | Yanchao Hao | Xi Chen | Dianhui Chu | Dianbo Sui
Proceedings of the 2024 Joint International Conference on Computational Linguistics, Language Resources and Evaluation (LREC-COLING 2024)

Chain-of-Thought (CoT) prompting combined with large language models (LLM) has shown great potential in improving performance on challenging reasoning tasks. While understanding why CoT prompting is effective is crucial for the application and improvement of CoT prompting, few studies have addressed this issue. Besides, almost no prior work has conducted theoretical analysis on CoT prompting in the context of black-box models. In this paper, we approach the analysis of CoT prompting in black-box LLMs from an information-theoretic perspective. Specifically, we propose a new metric, EPVI (Estimated Pointwise V-Information), which extends the concept of pointwise V-information to black-box models, quantifying the label-relevant new information introduced by CoT prompting beyond the pre-existing information in the input. Based on this, we conduct a series of experiments at both the task and instance levels to analyze CoT prompting, demonstrating that the effectiveness of CoT prompting can be attributed to its capacity to influence the difficulty of model inference by augmenting or reducing the model-usable information. Furthermore, we show that selecting high-quality demonstrations of CoT reasoning based on EPVI can improve the downstream performance of reasoning tasks.

pdf bib
MoDE-CoTD: Chain-of-Thought Distillation for Complex Reasoning Tasks with Mixture of Decoupled LoRA-Experts
Xiang Li | Shizhu He | Jiayu Wu | Zhao Yang | Yao Xu | Yang jun Jun | Haifeng Liu | Kang Liu | Jun Zhao
Proceedings of the 2024 Joint International Conference on Computational Linguistics, Language Resources and Evaluation (LREC-COLING 2024)

Chain-of-thought Distillation (CoTD) aims at distilling Chain-of-thought (CoT) reasoning ability of large language models (LLMs) to much smaller student models. The core of CoTD is using a large teacher model to generate rationales and fine-tune smaller student models. However, current Chain-of-thought Distillation works have the following limitations: 1) Student models are separately distilled from specific reasoning tasks and lack a collaboration mechanism, hindering the enhancement of reasoning performance through collaboration among various reasoning tasks. 2) The parameter update of student models severely harms the CoT reasoning ability on other unseen reasoning tasks not included in the distillation process. In this work, we introduce a novel CoT Distillation method, MoDE-CoTD, which decouples the CoT reasoning abilities out of the student model by distilling multiple LoRA-Experts and freezing the parameters of the student model. Sequentially, LoRA-Experts are combined and adapted to handle both seen and unseen reasoning tasks, enabling collaboration among diverse reasoning tasks to further enhance CoT reasoning performance. Experimental results on 14 datasets (including 4 unseen datasets) demonstrate the strength of MoDE-CoTD, with an average accuracy gain of 6.3% on seen datasets and 7.8% on unseen datasets.

2023

pdf bib
Representative Demonstration Selection for In-Context Learning with Two-Stage Determinantal Point Process
Zhao Yang | Yuanzhe Zhang | Dianbo Sui | Cao Liu | Jun Zhao | Kang Liu
Proceedings of the 2023 Conference on Empirical Methods in Natural Language Processing

Although In-Context Learning has proven effective across a broad array of tasks, its efficiency is noticeably influenced by the selection of demonstrations. Existing methods tend to select different demonstrations for each test instance, which is time-consuming and poses limitations in practical scenarios. Therefore, this study aims to address the challenge of selecting a representative subset of in-context demonstrations that can effectively prompt different test instances in a specific task. We propose that this representative subset should be of high quality and diversity. Our empirical analyses confirm that demonstrations that meet these criteria can indeed bolster model performance. To satisfy these criteria, this paper further introduces a two-stage Determinantal Point Process (DPP) method designed to incorporate both quality and diversity in the process of demonstration selection, thereby obtaining representative in-context demonstrations. Through comprehensive experimentation, we have confirmed the efficacy of our proposed method, paving the way for more practical and effective In-Context Learning.

2022

pdf bib
Logic Traps in Evaluating Attribution Scores
Yiming Ju | Yuanzhe Zhang | Zhao Yang | Zhongtao Jiang | Kang Liu | Jun Zhao
Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)

Modern deep learning models are notoriously opaque, which has motivated the development of methods for interpreting how deep models predict. This goal is usually approached with attribution method, which assesses the influence of features on model predictions. As an explanation method, the evaluation criteria of attribution methods is how accurately it reflects the actual reasoning process of the model (faithfulness). Meanwhile, since the reasoning process of deep models is inaccessible, researchers design various evaluation methods to demonstrate their arguments. However, some crucial logic traps in these evaluation methods are ignored in most works, causing inaccurate evaluation and unfair comparison. This paper systematically reviews existing methods for evaluating attribution scores and summarizes the logic traps in these methods. We further conduct experiments to demonstrate the existence of each logic trap. Through both theoretical and experimental analysis, we hope to increase attention on the inaccurate evaluation of attribution scores. Moreover, with this paper, we suggest stopping focusing on improving performance under unreliable evaluation systems and starting efforts on reducing the impact of proposed logic traps.

2021

pdf bib
Alignment Rationale for Natural Language Inference
Zhongtao Jiang | Yuanzhe Zhang | Zhao Yang | Jun Zhao | Kang Liu
Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers)

Deep learning models have achieved great success on the task of Natural Language Inference (NLI), though only a few attempts try to explain their behaviors. Existing explanation methods usually pick prominent features such as words or phrases from the input text. However, for NLI, alignments among words or phrases are more enlightening clues to explain the model. To this end, this paper presents AREC, a post-hoc approach to generate alignment rationale explanations for co-attention based models in NLI. The explanation is based on feature selection, which keeps few but sufficient alignments while maintaining the same prediction of the target model. Experimental results show that our method is more faithful and human-readable compared with many existing approaches. We further study and re-evaluate three typical models through our explanation beyond accuracy, and propose a simple method that greatly improves the model robustness.