Xiangci Li


2024

pdf bib
A Knowledge Plug-and-Play Test Bed for Open-domain Dialogue Generation
Xiangci Li | Linfeng Song | Lifeng Jin | Haitao Mi | Jessica Ouyang | Dong Yu
Proceedings of the 2024 Joint International Conference on Computational Linguistics, Language Resources and Evaluation (LREC-COLING 2024)

Knowledge-based, open-domain dialogue generation aims to build chit-chat systems that talk to humans using mined support knowledge. Many types and sources of knowledge have previously been shown to be useful as support knowledge. Even in the era of large language models, response generation grounded in knowledge retrieved from additional up-to-date sources remains a practically important approach. While prior work using single-source knowledge has shown a clear positive correlation between the performances of knowledge selection and response generation, there are no existing multi-source datasets for evaluating support knowledge retrieval. Further, prior work has assumed that the knowledge sources available at test time are the same as during training. This unrealistic assumption unnecessarily handicaps models, as new knowledge sources can become available after a model is trained. In this paper, we present a high-quality benchmark named multi-source Wizard of Wikipedia (Ms.WoW) for evaluating multi-source dialogue knowledge selection and response generation. Unlike existing datasets, it contains clean support knowledge, grounded at the utterance level and partitioned into multiple knowledge sources. We further propose a new challenge, dialogue knowledge plug-and-play, which aims to test an already trained dialogue model on using new support knowledge from previously unseen sources in a zero-shot fashion.

pdf bib
Contextualizing Generated Citation Texts
Biswadip Mandal | Xiangci Li | Jessica Ouyang
Proceedings of the 2024 Joint International Conference on Computational Linguistics, Language Resources and Evaluation (LREC-COLING 2024)

Abstractive citation text generation is usually framed as an infilling task, where a sequence-to-sequence model is trained to generate a citation given a reference paper and the context window around the target; the generated citation should be a brief discussion of the reference paper as it relates to the citing context. However, examining a recent LED-based citation generation system, we find that many of the generated citations are generic summaries of the reference paper’s main contribution, ignoring the citation context’s focus on a different topic. To address this problem, we propose a simple modification to the citation text generation task: the generation target is not only the citation itself, but the entire context window, including the target citation. This approach can be easily applied to any abstractive citation generation system, and our experimental results show that training in this way is preferred by human readers and allows the generation model to make use of contextual clues about what topic to discuss and what stance to take.

2022

pdf bib
CORWA: A Citation-Oriented Related Work Annotation Dataset
Xiangci Li | Biswadip Mandal | Jessica Ouyang
Proceedings of the 2022 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies

Academic research is an exploratory activity to discover new solutions to problems. By this nature, academic research works perform literature reviews to distinguish their novelties from prior work. In natural language processing, this literature review is usually conducted under the “Related Work” section. The task of related work generation aims to automatically generate the related work section given the rest of the research paper and a list of papers to cite. Prior work on this task has focused on the sentence as the basic unit of generation, neglecting the fact that related work sections consist of variable length text fragments derived from different information sources. As a first step toward a linguistically-motivated related work generation framework, we present a Citation Oriented Related Work Annotation (CORWA) dataset that labels different types of citation text fragments from different information sources. We train a strong baseline model that automatically tags the CORWA labels on massive unlabeled related work section texts. We further suggest a novel framework for human-in-the-loop, iterative, abstractive related work generation.

2021

pdf bib
Scientific Discourse Tagging for Evidence Extraction
Xiangci Li | Gully Burns | Nanyun Peng
Proceedings of the 16th Conference of the European Chapter of the Association for Computational Linguistics: Main Volume

Evidence plays a crucial role in any biomedical research narrative, providing justification for some claims and refutation for others. We seek to build models of scientific argument using information extraction methods from full-text papers. We present the capability of automatically extracting text fragments from primary research papers that describe the evidence presented in that paper’s figures, which arguably provides the raw material of any scientific argument made within the paper. We apply richly contextualized deep representation learning pre-trained on biomedical domain corpus to the analysis of scientific discourse structures and the extraction of “evidence fragments” (i.e., the text in the results section describing data presented in a specified subfigure) from a set of biomedical experimental research articles. We first demonstrate our state-of-the-art scientific discourse tagger on two scientific discourse tagging datasets and its transferability to new datasets. We then show the benefit of leveraging scientific discourse tags for downstream tasks such as claim-extraction and evidence fragment detection. Our work demonstrates the potential of using evidence fragments derived from figure spans for improving the quality of scientific claims by cataloging, indexing and reusing evidence fragments as independent documents.

2020

pdf bib
Context-aware Stand-alone Neural Spelling Correction
Xiangci Li | Hairong Liu | Liang Huang
Findings of the Association for Computational Linguistics: EMNLP 2020

Existing natural language processing systems are vulnerable to noisy inputs resulting from misspellings. On the contrary, humans can easily infer the corresponding correct words from their misspellings and surrounding context. Inspired by this, we address the stand-alone spelling correction problem, which only corrects the spelling of each token without additional token insertion or deletion, by utilizing both spelling information and global context representations. We present a simple yet powerful solution that jointly detects and corrects misspellings as a sequence labeling task by fine-turning a pre-trained language model. Our solution outperform the previous state-of-the-art result by 12.8% absolute F0.5 score.