Minjun Zhu


2024

pdf bib
Towards Graph-hop Retrieval and Reasoning in Complex Question Answering over Textual Database
Minjun Zhu | Yixuan Weng | Shizhu He | Kang Liu | Haifeng Liu | Yang jun Jun | Jun Zhao
Proceedings of the 2024 Joint International Conference on Computational Linguistics, Language Resources and Evaluation (LREC-COLING 2024)

In textual question answering (TQA) systems, complex questions often require retrieving multiple textual fact chains with multiple reasoning steps. While existing benchmarks are limited to single-chain or single-hop retrieval scenarios. In this paper, we propose to conduct Graph-Hop —— a novel multi-chains and multi-hops retrieval and reasoning paradigm in complex question answering. We construct a new benchmark called ReasonGraphQA, which provides explicit and fine-grained evidence graphs for complex question to support comprehensive and detailed reasoning. In order to further study how graph-based evidential reasoning can be performed, we explore what form of Graph-Hop works best for generating textual evidence explanations in knowledge reasoning and question answering. We have thoroughly evaluated existing evidence retrieval and reasoning models on the ReasonGraphQA. Experiments highlight Graph-Hop is a promising direction for answering complex questions, but it still has certain limitations. We have further studied mitigation strategies to meet these challenges and discuss future directions.

2023

pdf bib
Large Language Models are Better Reasoners with Self-Verification
Yixuan Weng | Minjun Zhu | Fei Xia | Bin Li | Shizhu He | Shengping Liu | Bin Sun | Kang Liu | Jun Zhao
Findings of the Association for Computational Linguistics: EMNLP 2023

Recently, with the chain of thought (CoT) prompting, large language models (LLMs), e.g., GPT-3, have shown strong reasoning ability in several natural language processing tasks such as arithmetic, commonsense, and logical reasoning. However, LLMs with CoT require multi-step prompting and multi-token prediction, which is highly sensitive to individual mistakes and vulnerable to error accumulation. The above issues make the LLMs need the ability to verify the answers. In fact, after inferring conclusions in some thinking decision tasks, people often check them by re-verifying steps to avoid some mistakes. In this paper, we propose and prove that LLMs also have similar self-verification abilities. We take the conclusion obtained by CoT as one of the conditions for solving the original problem. By performing a backward verification of the answers that LLM deduced for itself, we can obtain interpretable answer validation scores to select the candidate answer with the highest score. Experimental results demonstrate that the proposed method can improve the reasoning performance on various arithmetic, commonsense, and logical reasoning datasets. Our code is publicly available at: https://github.com/WENGSYX/Self-Verification.

2022

pdf bib
Knowledge Transfer with Visual Prompt in multi-modal Dialogue Understanding and Generation
Minjun Zhu | Yixuan Weng | Bin Li | Shizhu He | Kang Liu | Jun Zhao
Proceedings of the First Workshop On Transcript Understanding

Visual Dialogue (VD) task has recently received increasing attention in AI research. Visual Dialog aims to generate multi-round, interactive responses based on the dialog history and image content. Existing textual dialogue models cannot fully understand visual information, resulting in a lack of scene features when communicating with humans continuously. Therefore, how to efficiently fuse multimodal data features remains to be a challenge. In this work, we propose a knowledge transfer method with visual prompt (VPTG) fusing multi-modal data, which is a flexible module that can utilize the text-only seq2seq model to handle visual dialogue tasks. The VPTG conducts text-image co-learning and multi-modal information fusion with visual prompts and visual knowledge distillation. Specifically, we construct visual prompts from visual representations and then induce sequence-to-sequence(seq2seq) models to fuse visual information and textual contexts by visual-text patterns. And we also realize visual knowledge transfer through distillation between two different models’ text representations, so that the seq2seq model can actively learn visual semantic representations. Extensive experiments on the multi-modal dialogue understanding and generation (MDUG) datasets show the proposed VPTG outperforms other single-modal methods, which demonstrate the effectiveness of visual prompt and visual knowledge transfer.

pdf bib
A Knowledge storage and semantic space alignment Method for Multi-documents dialogue generation
Minjun Zhu | Bin Li | Yixuan Weng | Fei Xia
Proceedings of the Second DialDoc Workshop on Document-grounded Dialogue and Conversational Question Answering

Question Answering (QA) is a Natural Language Processing (NLP) task that can measure language and semantics understanding ability, it requires a system not only to retrieve relevant documents from a large number of articles but also to answer corresponding questions according to documents. However, various language styles and sources of human questions and evidence documents form the different embedding semantic spaces, which may bring some errors to the downstream QA task. To alleviate these problems, we propose a framework for enhancing downstream evidence retrieval by generating evidence, aiming at improving the performance of response generation. Specifically, we take the pre-training language model as a knowledge base, storing documents’ information and knowledge into model parameters. With the Child-Tuning approach being designed, the knowledge storage and evidence generation avoid catastrophic forgetting for response generation. Extensive experiments carried out on the multi-documents dataset show that the proposed method can improve the final performance, which demonstrates the effectiveness of the proposed framework.