Haris Riaz


2024

pdf bib
ELLEN: Extremely Lightly Supervised Learning for Efficient Named Entity Recognition
Haris Riaz | Razvan Gabriel Dumitru | Mihai Surdeanu
Proceedings of the 2024 Joint International Conference on Computational Linguistics, Language Resources and Evaluation (LREC-COLING 2024)

In this work, we revisit the problem of semi-supervised named entity recognition (NER) focusing on extremely light supervision, consisting of a lexicon containing only 10 examples per class. We introduce ELLEN, a simple, fully modular, neuro-symbolic method that blends fine-tuned language models with linguistic rules. These rules include insights such as “One Sense Per Discourse”, using a Masked Language Model as an unsupervised NER, leveraging part-of-speech tags to identify and eliminate unlabeled entities as false negatives, and other intuitions about classifier confidence scores in local and global context. ELLEN achieves very strong performance on the CoNLL-2003 dataset when using the minimal supervision from the lexicon above. It also outperforms most existing (and considerably more complex) semi-supervised NER methods under the same supervision settings commonly used in the literature (i.e., 5% of the training data). Further, we evaluate our CoNLL-2003 model in a zero-shot scenario on WNUT-17 where we find that it outperforms GPT-3.5 and achieves comparable performance to GPT-4. In a zero-shot setting, ELLEN also achieves over 75% of the performance of a strong, fully supervised model trained on gold data. Our code is publicly available.

2023

pdf bib
Synthetic Dataset for Evaluating Complex Compositional Knowledge for Natural Language Inference
Sushma Anand Akoju | Robert Vacareanu | Eduardo Blanco | Haris Riaz | Mihai Surdeanu
Proceedings of the 1st Workshop on Natural Language Reasoning and Structured Explanations (NLRSE)

We introduce a synthetic dataset called Sentences Involving Complex Compositional Knowledge (SICCK) and a novel analysis that investigates the performance of Natural Language Inference (NLI) models to understand compositionality in logic. We produce 1,304 sentence pairs by modifying 15 examples from the SICK dataset (Marelli et al., 2014). To this end, we modify the original texts using a set of phrases modifiers that correspond to universal quantifiers, existential quantifiers, negation, and other concept modifiers in Natural Logic (NL) (MacCartney, 2009). We use these phrases to modify the subject, verb, and object parts of the premise and hypothesis. Lastly, we annotate these modified texts with the corresponding entailment labels following NL rules. We conduct a preliminary verification of how well the change in the structural and semantic composition is captured by neural NLI models, in both zero-shot and fine-tuned scenarios. We found that the performance of NLI models under the zero-shot setting is poor, especially for modified sentences with negation and existential quantifiers. After fine-tuning this dataset, we observe that models continue to perform poorly over negation, existential and universal modifiers.