Atsushi Keyaki


2024

pdf bib
Coarse-Tuning for Ad-hoc Document Retrieval Using Pre-trained Language Models
Atsushi Keyaki | Ribeka Keyaki
Proceedings of the 2024 Joint International Conference on Computational Linguistics, Language Resources and Evaluation (LREC-COLING 2024)

Fine-tuning in information retrieval systems using pre-trained language models (PLM-based IR) requires learning query representations and query-document relations, in addition to downstream task-specific learning. This study introduces coarse-tuning as an intermediate learning stage that bridges pre-training and fine-tuning. By learning query representations and query-document relations in coarse-tuning, we aim to reduce the load of fine-tuning and improve the learning effect of downstream IR tasks. We propose Query-Document Pair Prediction (QDPP) for coarse-tuning, which predicts the appropriateness of query-document pairs. Evaluation experiments show that the proposed method significantly improves MRR and/or nDCG@5 in four ad-hoc document retrieval datasets. Furthermore, the results of the query prediction task suggested that coarse-tuning facilitated learning of query representation and query-document relations.

2022

pdf bib
Word-level Perturbation Considering Word Length and Compositional Subwords
Tatsuya Hiraoka | Sho Takase | Kei Uchiumi | Atsushi Keyaki | Naoaki Okazaki
Findings of the Association for Computational Linguistics: ACL 2022

We present two simple modifications for word-level perturbation: Word Replacement considering Length (WR-L) and Compositional Word Replacement (CWR).In conventional word replacement, a word in an input is replaced with a word sampled from the entire vocabulary, regardless of the length and context of the target word.WR-L considers the length of a target word by sampling words from the Poisson distribution.CWR considers the compositional candidates by restricting the source of sampling to related words that appear in subword regularization. Experimental results showed that the combination of WR-L and CWR improved the performance of text classification and machine translation.

2021

pdf bib
Joint Optimization of Tokenization and Downstream Model
Tatsuya Hiraoka | Sho Takase | Kei Uchiumi | Atsushi Keyaki | Naoaki Okazaki
Findings of the Association for Computational Linguistics: ACL-IJCNLP 2021

2020

pdf bib
Optimizing Word Segmentation for Downstream Task
Tatsuya Hiraoka | Sho Takase | Kei Uchiumi | Atsushi Keyaki | Naoaki Okazaki
Findings of the Association for Computational Linguistics: EMNLP 2020

In traditional NLP, we tokenize a given sentence as a preprocessing, and thus the tokenization is unrelated to a target downstream task. To address this issue, we propose a novel method to explore a tokenization which is appropriate for the downstream task. Our proposed method, optimizing tokenization (OpTok), is trained to assign a high probability to such appropriate tokenization based on the downstream task loss. OpTok can be used for any downstream task which uses a vector representation of a sentence such as text classification. Experimental results demonstrate that OpTok improves the performance of sentiment analysis and textual entailment. In addition, we introduce OpTok into BERT, the state-of-the-art contextualized embeddings and report a positive effect.